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Oxidative cross-coupling leading to 3-amido substituted
1,1 0-bi-2-naphthol derivatives
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Abstract—The oxidative coupling of 2-naphthol and 3-hydroxy-2-naphthamide with various copper catalysts under an O2 atmo-
sphere was performed. The reaction proceeded in a cross-coupling specific manner when the substrate has a secondary amido group.
� 2007 Elsevier Ltd. All rights reserved.
1,1 0-Bi-2-naphthol (BINOL) is among the most impor-
tant and versatile chiral auxiliaries in both catalytic
and stoichiometric reactions. The oxidative coupling of
the 2-naphthol derivatives is a facile and practical pre-
paration method for the BINOL framework, and many
metal catalysts have been developed.1 However, most of
these reported reactions involve the homo-coupling
affording C2 symmetrical BINOLs. The oxidative
cross-coupling reaction directly produces a C1 BINOL
skeleton, which having a substituent at the 3-position,
is interesting as a chiral ligand, because the ortho-site
of the hydroxyl group is close to the reaction center.

For example, the oxidative coupling of a 1:1 mixture of
2-naphthol and 3-hydroxy-2-naphthoate derivatives
gives three coupling products, that is, a cross-coupling
and two homo-coupling ones (Scheme 1). Although
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several reports on the cross-coupling selective reactions
with an excess amount of the copper complex are avail-
able,2 little is known concerning the catalytic process.
Recently, we attained the asymmetric oxidative cross-
coupling reaction using the CuCl-2,2 0-isopropylidenebis-
(4-phenyl-2-oxazoline) [CuCl-Phbox] catalyst (Fig. 1).3

On the other hand, the alternative and stepwise routes
to a similar C1-type BINOL, that is, the ortho-substitu-
tion of BINOL via the anionic Fries rearrangement,4

have been reported.

In this study, the oxidative coupling reaction of 2-naph-
thol (1) and 3-hydroxy-2-naphthamide, 2a–e (Fig. 2)
with various copper catalysts was carried out, and it
was found that the reaction of 2 with a secondary amide
group proceeds in a cross-coupling specific manner to
give a coupling product 3. This cross-coupling specific
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Figure 2. Substrates and cross-coupling products.

Table 1. Oxidative cross-coupling of 1 and 2a with various copper
catalystsa

Run Catalyst Time (h) Yieldb (%) eec (%)

1 CuCl(OH)-TMEDA 72 60 —
2 CuCl-(+)PMP 72 42 22 (S)
3 CuCl-(�)Sp 72 78 60 (S)
4 CuCl-(S)Phbox 28 87 41 (S)
5 CuCl-(R)Bnbox 72 75 46 (R)

a Conditions: [1]/[2a]/[Cu] = 0.5/0.5/0.05, solvent = THF, temp = rt,
O2 atmosphere.

b Isolated yield of cross-coupling product 3a (cross-coupling selectivity
>99%).

c Determined by HPLC (Chiralpak AS-H).
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oxidative coupling was further used for the polymeri-
zation of a novel monomer, N-n-butyl-6,6 0-dihydroxy-
2,2 0-binaphthalene-7-carboxamide (4), affording a
poly(BINOL) with a head-to-tail main-chain structure.

The oxidative coupling reaction of 1 and 2a (1:1) with
various copper catalysts in THF at room temperature
under an O2 atmosphere was examined (Table 1). The
catalytic cross-coupling reaction of 1 and methyl 3-
hydroxy-2-naphthoate with the TMEDA-, PMP-, and
Sp-complexes was unsuccessful as previously reported.3

For example, the reaction with the CuCl-(+)PMP cata-
lyst for 48 h afforded the homo-coupling compound of
the latter substrate as the main product (selectivity:
60%) and the cross-coupling one was obtained in a 9%
yield (selectivity: 38%).3a In marked contrast, these di-
amine complexes catalytically produced 3a in moderate
yields with a cross-coupling selectivity of >99% (entries
1–3). The reaction with the CuCl-bisoxazoline catalysts,
such as (S)Phbox and (R)Bnbox, also resulted in a >99%
selectivity (entries 4 and 5) to give 3a. Accordingly, for
the reaction of 1 and 2a, the cross-coupling specific reac-
tion takes place regardless of the ligand structure. The
CuCl-Phbox catalyst shows the highest catalyst activity,
whereas the (�)Sp ligand gave the coupling product
with the highest ee value of 60% (S).

Table 2 lists the results of the oxidative coupling reac-
tion between 1 and 2b–e with CuCl(OH)-TMEDA and
CuCl-Phbox. The coupling of 2b bearing a secondary
aromatic amide group again afforded 3b in a cross-cou-
pling specific manner with a moderate yield (entries 1
and 2). However, the reaction of 3-hydroxy-2-naphth-
amides with a tertiary amide group, such as 2d and 2e,
in THF gave a mixture of two coupling products, the
cross-coupling (major one)4 and the homo-coupling of
2 (minor one) (entries 6, 7, 9, and 10). The solvent also
influenced both the catalyst activity and selectivity. The
reaction in dichloromethane produced 3 with a much
higher cross-coupling selectivity and yield than those
for the reaction in THF, while the stereoselectivity of
obtained 3 was significantly reduced (entries 8 and 11).
The amide structure, probably its steric and electronic
effects as well as the hydrogen bonding effect, plays an
important role in the coupling selectivity, and the sec-
ondary amide group as an ortho-substituent is quite
effective.

A plausible mechanism for the catalytic cross-coupling
was suggested as follows: the b-naphthol with the elec-
tron-withdrawing group works as an acceptor, while
the one-electron oxidation is promoted on the other sub-
strate, 2-naphthol, by the copper(II) catalyst that gener-
ates a radical intermediate, which concertedly and
selectively reacts with the acceptor molecule.2a–c,3,5 The
above coupling results for the 3-hydroxy-2-naphth-
amides adequately support this mechanism.

The cross-coupling specific oxidative coupling reaction
between 2-naphthol and 3-hydroxy-2-naphthamide was
developed. This method was then used for the polymer-
ization to produce a novel poly(BINOL).6 The polymer-
ization of 6,60-bi-2-naphthol with N-n-butylamide group,
4, with various copper catalysts in THF at room temper-
ature under an O2 atmosphere was conducted (Scheme
2), and the results are summarized in Table 3. The poly-
merization with TMEDA and (�)Sp gave a methanol–
ethyl acetate–1 N HCl (2.5/7.5/1, v/v/v)-insoluble



Table 2. Oxidative cross-coupling of 1 and 2a

Run 2 Catalyst Time (h) Product Cross-coupling selectivityb (%) Yieldc (%) eed (%)

1 2b CuCl(OH)-TMEDA 72 3b >99 49 —
2 CuCl-(S)Phbox 48 >99 54 53 (R)e

3 2c CuCl(OH)-TMEDA 72 3c >99 43 1 (R)f

4 CuCl-(S)Phbox 30 >99 65 16 (S)f

5 CuCl-(R)Phbox 48 >99 66 46 (R)f

6 2d CuCl(OH)-TMEDA 72 3d 78g 50 —
7 CuCl-(S)Phbox 24 77g 53 27 (S)
8h CuCl-(S)Phbox 9 95g 91 �0
9 2e CuCl(OH)-TMEDA 72 3e 97g 30 —

10 CuCl-(S)Phbox 48 87g 61 38 (S)
11h CuCl-(S)Phbox 24 98g 93 19 (S)

a Conditions: [1]/[2]/[Cu] = 0.5/0.5/0.05, solvent = THF, temp = rt, O2 atmosphere.
b Ratio of isolated yields.
c Isolated yield of cross-coupling product 3.
d Determined by HPLC (Chiralpak AD-H).
e Determined by HPLC (Chiralpak AS-H).
f de, %, Determined from isolated yields.
g Homo-coupling product of 2 was obtained as a by-product.
h Solvent = CH2Cl2.
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polymer in no and low yields, respectively (entries 1
and 2). In contrast, the bisoxazoline catalyst systems
produced poly-4 in a 64% yield (entries 3 and 4).

The obtained polymers should be composed of the
cross-coupling unit as demonstrated in the model cou-
pling reaction of 1 and 2a (Table 1). This is also sup-
ported by the 1H NMR analysis, which shows a
simple and sharp peak pattern assigned as the polymer
with a regular head-to-tail configuration and without
any homo-coupling units. The CD spectral patterns
demonstrated that the poly-4’s obtained with (�)Sp
and (S)Phbox preferentially have an S-configuration,
whereas the polymer prepared by (R)Bnbox mainly con-
Table 3. Oxidative cross-coupling polymerization of 4a

Run Catalyst Time (h)

1 CuCl(OH)-TMEDA 48
2 CuCl-(�)Sp 72
3 CuCl-(S)Phbox 24
4 CuCl-(R)Bnbox 72

a [4]/[catalyst] = 1/0.2, solvent = THF, temp = rt, O2 atmosphere.
b MeOH–AcOEt–1 N HCl (2.5/7.5/1 v/v/v)-insoluble part.
c Determined by SEC.
d In CHCl3.
e Yield of THF-soluble and MeOH–AcOEt–1 N HCl (2.5/7.5/1 v/v/v)-insolu
sists of the R-structure.6,7 These results are again quite
comparable to those of the coupling reaction of 1 and
2a. The stereocontrol effect for the (�)Sp catalyst system
during the polymerization, however, is much lower than
that of (S)Phbox, in contrast to the coupling reaction,
based on the [a]D value and the CD absorption intensity.
This may be due to the fact that the 2,2 0-binaphthyl
monomer structure affects the coupling stereoselectivity.

In conclusion, the cross-coupling specific oxidative cou-
pling of 2-naphthol and the 3-hydroxy-2-naphthamide
derivatives with the copper catalyst was attained to give
a C1-symmetric BINOL with a 3-amido substituent. The
cross-coupling and stereoselectivities were significantly
affected by the amide structure as well as the copper
catalyst.
Acknowledgement

This work was partially supported by Grants-in-Aid for
Scientific Research (No. 18039003) from the Ministry of
Education, Science, Sports, and Culture of Japan.
Supplementary data
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spectrum of poly-4 are available. Supplementary data
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associated with this article can be found, in the online
version, at doi:10.1016/j.tetlet.2007.08.036.
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